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1. Introduction and Preliminaries. Among the most useful replacement

policies currently in popular use are the age replacement policy and the

block replacement policy. Under an Me replacement policy a unit is

replaced upon failure or at age T, a specified positive constant,

whichever comes first. Under a block replacement policy a unit is

replaced upon failure and at times T, 2T, 3T ..... Block replacement

is easier to administer since the planned replacements occur at

regular intervals and so are readily scheduled. This type of policy

is commonly used with digital computers and other complex electronic

systems. On the other hand, age replacement seems more flexible since

under this policy planned replacement takes into account the age of

the unit. It is therefore of some interest to compare these two policies

with respect to the number of failures, number of planned replacements,

and number of removals. ("Removal" refers to both failure replacement

and planned replacement.)

Block replacement policies nave been investigated by E. L. Welker,

1959, R. F. Drenick, 1960, and B. J. Flehinger, 1962. Age replacement

policies have been studied by G. Weiss, 1956, and Barlow and Proachan,

1962, among others.

The results of this paper depend heavily on the properties of
distributions with monotone failure rate (Barlow, Marshall, and Proschan,

1963). If a unit failure distribution F has a density f, it can be

verified by differentiating log 1(x) that the failure rate

r(x) =f(x)/(x)
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is increasing (decreasing) if log T(x) is concave when finite (is

convex on [0,ao)). We consistently use F for 1 - F. For mathe-

matical convenience and added generality, we usa this concavity (con-

vexity) property as the definition of increasing (decreasing) failure

rate whether a density exists or not. We shall refer to increasing

failure rate by IFR and decreasing failure ra+e by DFR. It is also

easy to show that F is IFR(DFR) if and only if

F(x + 4) - F(x)

is increasing (decreasing) for all x such that A > 0 and F(x) > 0.

This implies F is IFR(DFR) if and only if

(.A)1)

ix)

is increasing (decreasing) in x for all A > 0. This property will

be needed in Theorem 2.1.

The evaluation of the replacement policies considered also depends

heavily on the theory of renewal processes (e.g., Smith, 1958, and Cox,

1962). A renewal process is a sequence [Xk]O of independent random
k=-1

variables with common distribution F. We also assume Flo) = 0. If

the random variables are not identically distributed we call this a

generaJ.izck rewtwal process. Let us write N(t) for the largest value

vlý 1ý'of n for which X, .+ +X2 + Xn t; in other words 14(t) is the

number of renewals that will have occurred by time t. We will be

primarily concerned with the renewal function, M(t) = E[N(t)].



In this paper we show that, assuming an IFR(DFR) unit failure

distribution, the number of failures in (Ot] is stochastically

larger (smaller) under an age policy than under a block policy. The

number of planned replacements and the total number of removals is

always stochastically smaller under an age policy than under a block

policy.

By considering the number of failures and the number of removals

per unit of time as the duration of the replacement operation becomes

indefinitely large, we are able to obtain simple useful bounds on the

renewal function. In particular we show that the moments, binomial

moments, and variance of an IFR(DFR) renewal process are dominated

(subordinated) by the corresponding moments and variance of a Poisson

process. Inequalities for generalized renewal processes are also

obtained.

ACKNOWLEDGMENT. The basic problems concerning replacement were originally

proposed by Igor Bazovsky, 19621 he also conjectured (2.5) and (2.6).

We at, indebted to Albert W. Marshall and Ronald Pyke for help and

advice.
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2. Contrast Between Age and Block Replacement. Denote the number of

renewals in [O,t] when replacement occurs only at failure by N(t)

and let M(t) = E[N(t)]. Denote the number of failures in [Ot] under

a block policy by N*(t) and under an age policy by Nf(t), both having

replacement interval T. The following theorem provides a stochastic

comparison of the number of failures experienced under these policies.

We assume F(0) = 0 throughout.

Theorem 2.1 If F is IFR(DFF4), then

P(N(t) n]6P(NA*(t) > n](6 P(N*(t) > n] (2.1)

for T ý 0, n = 0, 1,2,.... Equality is attained for the exponential

distribution Fjx) = 1 - e where V, denotes the mean of F.

We defer the proof of Theorem 2.1 to Section 3. The following

useful bounds on M(t) are an immediate consequence of Theorem 2.1.

Corollary 2.1 If F is IFR(DFR), then

M M~t (6 [Nk*t) ( E(N*(t)]

(ii) 1(t)6 kM(t/k) k = 1,2,... (2.2)

i ii•);i•.i ... (iii) M(t) t/ol

(iv) 1(h) (t +h) - M(t) h > o

for all t 0 0. The inequalities are sharp.
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Proof

(i) follows from Theorem 2.1 and the fact that

M(t) = E[N(t)] = ZP[N(t) Žn].
n=l

(ii) Let T = t/k and observe that for this replacement interval

M(t)(N E[N(t)] = kM(T) = kM(t/k).

(iii) By (ii)

M (kT) T M(T) k 1,2,3 ....
kT M(6

Letting k -. we obtain

M(T) Gs. T/AL

since

lim MW = I/VI

by the fundamental renewal theorem (e.g., Smith, 1958).

(iv) Using the notation of Theorem 2.1

th
M(t + h) - M(t) = S S(1 + M(h - u)]dFx(u)dxP[b(t) X]

th
> S S [1 + M(h - u)]dFju)d1 P[b(t) • x]

(D)o 0

since Fx(u) is increasing (decreasing) in x. Therefore

t
M(t + h) -1M(t) > M(h)S d P[f(t) <.x] M(h). II

(<) 0

The following formula, true -for all distributions with second
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moment L2 <e, provides an interesting comparison with (2.2)

M(t) = t/p+ + P_2 - 1 + o(1)21-1-1,

(see e.g. Smith, 1958). As we shall show, inequality (2.2) can be

strengthened by assuming somewhat more. It is also true under weaker

assumptions.

Let NA(t) and NB(t) denote the total number of removals in

[O,t] following an age and a block replacement policy respectively.

The following theorem, true for all distributions, is intuitively

obvious.

Theorem 2.2

P[N(t) n) :ý_P[NA(t) ýý_n] < P[NB(t) ý n]

for all t Ž 0, n = 0,1,2,.... We defer the proof to Section 3.

Corollary 2.2

(i) M(t) • E[NA(t)1 E[NB(t)]

(ii) M(t) < kM(t/k) + k k.= 1,2,... (2.3)

(iii) M(t) Ž t/& 1 - 1

for all t O.

•%•,.•;,Proof

(i) is an immediate consequence of Theorem 2.2.

(ii) Let T = t/k and observe that for this replacement interval

"M(t) ECENB(t)J =kM(T) + k kM(t/k) + k.
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(iii) follows from the elementary renewal theorem

lim M(t)/t = /ill. II

The following theorem summarizes some well-known limit results

from renewal theory.

Theorem 2.3

(i) lim N(t)/t = lim M(t)/t = 1/pI

T
(ii) lim N[(t)/t = lim E[N*(t)]/t = FMT)/IS x)dx

t- t-+G 0

(iii) lim N*(t)/t = lim E(NB(t)]/t = M(T)/T.
t-+Go B t-+ Go

Proof

(t) See e.g. Smith, 1958.

(W) The times between failures (Yi= for an age replacement policy

constitute a renewal process xth distribution

N(t) = P[Yi ý t] = [!(T)]nF(t - nT) (2.4)

for nT i .< (n + 1)T. The expected value of Yi can be calculated

from (2.4) to be

T
E[Yi] = S (x)dx/F(T).

T
00

by (i).

(Mii) Let N i(T) denote the number of failures in [(I - l)TiT]



following a block replacement policy. Then

n
limi N-"t)/t = imi Z N* (T)/nT = E(NB (T)I/T = M(T)/T. II
t.+ W . n-+ = i=l B ±

For a generalization of (iii), see, e.g., Flehinger, 1962.

Using these limit results we can sharpen (2.2).

Theorem 2.4

t
(M) M(t) ý t/S Y(x)dx - 1 ý t/p 1 - 1. (2.5)

0

(ii) If F is IFR(DFR), then

t
M(t) tF(t)/S Y(x)dx( t/ll (2.6)

for all t >0.

Proof

(i) By Corollary 2.2 (1)

E[NA(t) ] K E[N B(t)]1.

By Theorem 2.3 (ii) and (iii)

T
lim Z[NA(t)]It = 1/S j(x)dx lim rENB(t)llt = M(T)/T + /T0 t 0 o

which ilplies

T
4M(T) T/IS (x)dx -1 for all T > O.

0

T T
Obviously S l(x)dx < p, implies TIS Wx)dx -1 T/lp -1.

0 0



9

(ii) By Corollary 2.1 (i)

By Theorem 2.3 (ii) and (iii)

T
M(T)/T = lia E[N,(t) l/t < lir E[N,(t)]/t F(T)IS i(x)dx < 1,LI.

t- O(2) t-+-c 0 (

The last inequality follows by noting that i(t) [see (2.4)] is

decreasing (increasing) in T if F is IFR(DFR). II

Equality is attained in (2.5) at t- where t = kpl (k = 1,2,...)

by the distribution degenerate at the mean 11 and of course M(t) 0 0

is sharp for t < pl. Equality is attained in (2.6) for the Poisson

process. Note that inequality (2.6) is am Improvement on (2.5) fi

the DPR ease sine

t t t t
tF(t)/S i(x)dx Ž S F(x)dz/S F(x)dx = t/S Rx)dx - 1.

0 0 0 0

From (2.5) and (2.6) we see that

T
I/i, - I/T < M(T)/T ý (T)/S i•x)dx • 1/ 1

0

when F in IFR. Hence in this circumstance, the expected number of

failures per unit time in the limit does not differ by more than one

unit using either policy.
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3. Proofs of the Theorem of Section 2.

Proof of Theorem 2.1: Assume F is IFR. First let us suppose

0 K t K T, where T is the replacement interval. Let P[N(t) >_nix]

denote the probability that N(t) ý n, given that the age of the unit

in operation at time 0 is x. Then we shall show that

P(N(t) Žnix] ŽP[N*(t) Žnlx] > P[NB(t) Ž,n]. (3.1)

For n = 0, (3.1) is trivially true. For n > 0, we can rewrite

(3.1) as

t ( n1 ) t ( n 1T ( -) ttF n'l)(t - u)dFx (u) > I F(n) (t - u)dFT(u) • StF(n'l)t - u)dF'(u)
0 0 0

(3.1')

where F(n)(t) denotes the n-fold convolution of F with itself and

Fx(u) = F(x + u) - E(x)
R x)

;x(u) is the distribution of the time to the first failure when the

age of the unit in operation at time 0 is x and planned replacement

is scheduled for T - x if no failure intervenes. We need specify the

distribution Fx(u) only on [O,t]:

F(x +u) - Xx) i < -
if u T - x

F(T) -(x) + AT)F(u-T+x) if T-x~u~t.

S(x)
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To prove (3.1') we need only show

-F.( ŽF (u) F> u) for 0 < u <_ t3.2)

since F(n-l)(t - u) is decreasing in u. For u < T - x

F.(u) = FT(u) = F(x + u) -- Ax) > K~u)

since F is IFR. For t - x <_u <_t

F(x + u - T +T) - F(T) > Kx + u - T)

F;(T)

implies

F(x + u) > F(T) + ;(T)F(u - T + x)

and so

(U)F( + u) - F(x) >F(x) - FT) + FT)F(u- T + x) ;(u)(x) - x(x)

proves the first inequality in (3.2). Also for T - x < u < t,

Ru - T + x)

F(u)

is increasing in u by (1.1) since we may assume x • T. Therefore

Ru. - T + x)< kX

1(u) F(T)

since 0 u.u T. Rearrangement yields

U) F_. F)(u)- T + x)
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so that

XT(u) _ ) T) + R T)Au - T + x) x F(U)

which completes the proof of (3.2). From (3.2) we deduce that for

x > 0 and O<_t <_T

P[N(t) ý njx] ý_P[NA*(t) ý njx] ý_ P[N*(t) ý_n].

Now suppose kT < t < (k + 1)T, where k ý 1. The proof proceeds

by induction on k. Assume (3.1) is true for 0 ý t < kT. For n = 0,

(3.1) is trivially true. For n > 0, write

n T
P(N(t) nI = S ([P[N(T) = rjb(T) = x]P[N(t-T) ý n-rlb(T) = x]1dxP[b(T) <_x]

rO 0

n T
P[NA(t) > n] = Z S [P[NA*(T) = rIb(T) x]P[N*(t-T) Ž n-rlb(T) = x]ddPfb(T) < x]

r--O 0

and
n T

P[N*(t) > n] = Z S [P[NN(T) = rb(T) x]P[N*(t-T) kn-r]ldxP[b(T) • x]
rO 0

where b(T) is a random variable denoting the age of the unit in use at

time T. By inductive hypothesis

P[N(t-T) Ž n-rlb(T) = x] Ž P[N*(t-T) Žn-rkb(T) = x] BPIN(t-T) n-r].

Also

P[N(T) = rjb(T) = x] P.NI(T) = rib(T) = x] P[N*(T) = rib(T) = x]

since all three policies coincide on [O,T). Hence (3.1) follows for

KT • t < (k + 1)T for all k • 1 by the axiom of mathematical induction.
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For F DFR the proof is similar with the inequalities reversed.

Proof of Theorem 2.2 (Due to Albert W. Marshall) Let [XkI* denote
k=-i

a realization of the lives of successive components. We shall compute

what would have occurred under an age and under a block replacement

policy. Let Tn(TB) denote the time of the nth removal under an

age (block) replacement policy. Then

Tn = min(TnA- + T,T,-I + n )A A

n = min(TB-i + ,T + Xn)

where a(O < 11 < T) is the remaining life to a scheduled replacement.

Since initially T T=IT, we have by induction TA n T . Thus for

any realization Xkk=1INA(t) is smaller than NB(t). By a similar

argument N(t) is smaller than NA(t) for any realization. II
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4. Renewal Theory Consequences. A renewal process is an IFR(DFR)

renewal process if the underlying distribution F is IFR(DFR). This

does not imply that N(t), the renewal quantity associated with an

IFR(DFR) renewal process, is IFR(DFR). (See Barlow, Marshall, Proschasn,

1963). However, just as the geometric (exponential) distribution is a

natural comparison distribution for IFR and DFR discrete (continuous)

random variables, the Poisson process serves as a natural comparison

process for IFR and DFR renewal processes. In Corollary 2.1 we saw that

the mean of an IFR(DFR) process is dominated (subordinated) by the mean

of an associated Poisson process. This is also true of the binomial

moments and, indeed, even the variance.

We define the mth binomial moment, Bm(t), as

Bm(t) = Z ( )P[N(t) = J].J=O

The following result is no doubt well known. However since we cannot

cite a reference we present a short proof.

Lemua 4.1 For any renewal process (N(t); t > 01,

Bm(t) = M(m)(t)

where M(m)(t) denotes the m-fold convolution of M(t) = E[N(t)].

-at
Proof Let Bm(s) e e-tdBm(t). Then

0

Ba(s) = 1(J)[Fe(s)]J [F*(s)

j-0
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Now S~m
S  (l-x) M+ for I xI<1

implies

B*(S) I = [M*(s)]m.
[J. - Fe(s) )m

The result follows by the inversion theorem for Laplace tranafo-mu. I

The mean life of a used unit of age t

cc

S (x)d)V7(t)
t

is called the mean residual life of the unit. If F is IFR(DFR) with

mean pl, then

l x)d-t) P (4.1)

Of course, the converse is not true and (4.1) is a significant weakening

of the IFR(DFR) assumption. The following proof is due to R. Pyke.

Theorem 4.1 If F has mean I and for O0 t<co

S Y(x)dxV-(t)~ IL~t
t

then

th

and M(t) (t) the a mment of the I. renitm l

process and IC(t) is the th moment of the corresponding Poisson

Procnes

rProof Let Xkr be a renewal procesu with corresponding distribution
-- k--1

F. Let

y(t) = Xk + X2 +'"+ XN(t)+I - t
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and

b(t) = t - [xl + X2 + XN(t)]

Then
t

P[y(t) >u] = S 'x(u)dxP[b(t) <x]
0

where

7•(u) = (x+ u) - F(x)

X1x)

Therefore

E[y(t)] = S P[y(t) Ž u]du
0

=€" -S u 1dP[ 6(t) = xju b(t) x] du

0 0

- ]
= [0  (u)du dxP[b(t) < x]

by FNbini's theorem. Since by hypothesis

? (u) du/1(x) 01
X

we have
t

EIY I(ýS- pl~d xP((t) •x] p=

But

E[y(t)] = PI[M(t) + 1] - t

implies

M(t) 6st/Pl.

The first result follows from Lemma 4.1 and convolution.
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n+l

To obtain the second result note that n= Z x(x - l)...(x - m + m
r "he S

where are the Stirling numbers of the second kind, Jordan, 1950,
nn

p. 168. As pointed out by Jordan, 1950, p. 169, the SM are positive.

The second result thus follows. II

From Lemma 4.1 we can compute the variance of the renewal quantity,

namely

Var[N(t)] = 2S M(t- x)dM(x) + M(t) - [M(t) 12
0

Using this formula we can prove

Theorem 4.2 If [N(t); t ý 0] is an IFR(DFR) renewal process, then

Var[N(t)] < E[N(t)] =M(t).

The inequality is sharp.

Proof Assume [N(t); t 0 O1 is an IFR renewal process. Since

t
Var[N(t)] = S [2M(t - x) + 1 - M(t)]dM(x)

0

we need only show

t
S ((t - x) - M(t)]dM(x) < 0.
0

But M(x) < M(t) - M(t - x) by (iv) of Corollary 2.1 implies that we

need only show

t
S [M(t - x) - M(x)]dM(x) o0.
0

Clearly
:it st/2 t

[S(t - x) -M(x)]dM(x) = [M(t x) M(x)]dM(x) + [M(t - x) - M(x)]dM(X).

0 0 t/2
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Let y= t -x, then

St [M(t - x) - M(x)]dM(x) t/2 [M(t - y) - M(y)]dM(t - y).
t/2 0

Ifence we need only show

st/2 t/2
S [M(t - x) - M(x)]dM(x) t S [M(t - x) - M(x)]d[M(t) - M(t - x)].
0 0

This follows immediately, since M(t - x) - M(x) is non-increasing in

x, [M(t - x) - M(x)] > 0 for 0 <_x < t/2 and

M(x) _ M(t) - 14 t - x).

All inequalities are reversed if F is DFR. Equality is attained

by the Poisson process. II

Next we obtain a generalization of the inequality

M(t) < t/1 1

which holds when successive replacements have different failure distri-

butions but a common mean. The method of proof is quite different from

that used in Theorem 2.1 or Theorem 1.1. We will need to define the

generalized renewal function

M o(t) = Fl(t) + Fl*F2 (t) + Fl*F2 *F3 (t) +.... (4.2)

Note that Mo(t) is the expected number of renewals in a stochastic

process in which the first unit has distribution F1 , its replacement

has distribution F2 , etc.
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Theorem 4.3 Let F1 ,F 2 ,F3 ,... be non-degenerate IFR(DFR) distributions

with common mean p, and assume

-tbp1
Fi(t) X (t) = 1 - e-, . > Z)

and I 1,2, .... Then

p0(t) < t/, 1  for t > 0. (4.3)
C>)

Proof Assu•e F, (i = 1,2,...) are IFR. First suppose F, = F2 =

Then
( ,k)(t cc • (k) () t•

Mo(t) = F1 < Z G =(t) =

k=l-k

for 0 < t p l (See Barlow, Marshall, 1963) . Suppose there exists

S> P, such that Mo(C) = r/pl" Then, since F has mass in [0,rj]

V/P = M°(T) = S [1 + Mo(T - x) ]dFl(x) < S (1 + I -. ]dF (x)

or

V/1 < FI('t) + S Fl(x)dx/IL,
0

which implies

CS Wl(x)dx/Fj(-) ]< pl.
0

But this contradicts (2.6) of Theorem 2.4. Hence Mo0(v) < T/01, 0 < T <w ,

for this special case.

The argument proceeds by induction. SupV. se the theorem is true

for all sequences of distributions of the form H,H,...,H

Hk+l = Hk+ 2 - ... where the Hi satisfy the IFR assumption.
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M 1(t) = F2(t) + F2 *F3 (t) +...+ F2 *F3 *... *Fk+l(t)

+ F2-*3"' *Fk+,*Fk+l (t) +...

and
t

M0 (t) = S [1 + M1 (t - x)]dF1 (x).
0

As before, M0 (t) < t/p1 for 0 < t < pl. Suppose there exists T > p,

such that Mo (T) = ¶/pi. This implies

Ir It
'C/1= S [1 + MI( - x)]dFI(x) < FI('L) + S Fl(x)dx

0 0

and

7(x)/FI (,E < tl.
0

This is a contradiction. Theorem 4.3 follows by the axiom of mathe-

matical induction.

All inequalities are reversed for DFR distributions. fl

The method of proof used in Theorem 4.3 can be used to generalize

the bound on M(t) in yet another direction.

Theorem 4.4 Assume F has density f, failure rate r(x) = f(x)/[F(x)],

and mean pL1"

(i) If r(x) ý a for all x, then M(t) < t/jkI + I/alI - 1.

(ii) Suppose there exists b > 0 such that f(x) > 0 for 0 < x < b.

If r(x) ( p, then M(t) >_ t/p, + I/pp1 - 1.

All inequalities are sharp.
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Proof If F(x) = 1 - e the bounds are attained. Hence
-- _X/Pl

suppose F(x)/ /1 - e . Then

inf r(x) < 1/p1 < sup r(x) (4.4)
x x

(see Barlow, Marshall, Proschan, 1963). (4.4) implies a < 1/i, < P,

and

1/o. - 1 > 0

- 1 < 0.

Since M(O) = 0,

t/li + i/PiP - 1 < s(t) < t/ 1i + i/ajl, - 1

for t sufficiently small.

(i) If 4 = 0, we are done. Hence assume a > 0 and suppose there

exists 0 < v < o such that

M(t) = ¶1/Pi + i/ai - 1

and

M(t) < t/pi +/ai - I for t < T.

Then

1/Li + 1/21i - 1 = M(T) = S [1 + M(t - x)]dF(x) < S ((r - x)/Ii + l/a*i]dF(x) (4.5)
0 0

since r(x) Ža implies F(t) Ž1 - e"at and hence F has mass in [0,i].

(4.5) implies

T/pi + i/ad -i < 1 ir0z) + •x.1~ 0 PI
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But r(x) > a implies

f(x) Žui(x)

and so

(t) = S f(x)dx > aS F(x)dx

which implies

+( +S %F•-•x< 'r+i- -,
0 0I - Il aIl

a contradiction. Hence, actually

M(t) < t + -1

-t/LI

when F(t) th1 - e .

(ii) If p = •, the inequality follows from Corollary •.2 (iii).

Hence suppose < -. There exists 0 < T < - such that

M(.) = l + 1_ _

and

M(t) >t + l for t <(
1Ll PI'l

Then

It- + i_1I = M(,c) S (O1[ + M(% - x) ]dF(x) > SO [.X• + ]dF(x)

Pl P~l 0 0 I"1 PI~L:

since F has mass in [0,¶]. Therefore

_.• + i _ > F(,r.+ ' F(x)dx • .r + __ _
1Ai P•i PP 0 PI Pi + •F

since r(x) < p. This is a contradiction and therefore

M(t) > + -i

for 0 < t <- when F(t) 1 - e .
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